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Abstract. In the hard pomeron model consequences are studied which follow from the recently obtained
form of the diffractive amplitude for the double scattering on the nucleus and the related EMC effect at
small x. It is shown that at large Q2 to the double scattering contribution to the latter falls as Q−0.6338

and in all probability dominates the total effect.

1 Introduction

Double scattering

1.1 The observed decrease of the nuclear structure func-
tions at small x (the low x EMC effect) has long been a
subject of extensive theoretical studies. In principle, the
origin of the effect is clear: it is a result of the nuclear
absorption for a hadron-like projectile. Many proposed
models describe the existing data reasonably well [1–8].
They are all, by necessity, of a rather phenomenological
nature, since the present data belong to the region of com-
paratively small 1/x and Q2, where no reliable theory is
applicable.

A more fundamental approach is possible within the
hard (BFKL) pomeron model. Altough this model in its
present form (a fixed coupling constant) does not, strictly
speaking, refer to the QCD, nevertheless its predictions
may be valid for the QCD provided the confinement ef-
fects are either inessential for the high-energy behaviour
or are suitably parametrized by some cutoff parameters.
In the framework of the hard pomeron model the EMC
effect is a consequence of multiple pomeron exchanges
or/and pomeron interactions. Thus its study provides an
insight into the solution of the unitarization problem in
the model.

In a recent publication [9] we studied the EMC effect
in the approximation in which the number of pomerons
is conserved and their interaction is neglected. The lat-
ter approximation follows if one takes the high colour
Nc limit: the interaction between pomerons has a rela-
tive order 1/N2

c . As to the conservation of the number of
pomerons and, in particular, absence of the contribution
from the triple and multiple pomeron vertices, this can
be justified for high enough Q2. Indeed consider the con-
tribution from the exchange of two pomerons shown in
Fig. 1. The upper blob B describing the interaction of the
virtual photon with the two pomerons has its own energy√
s1 and scaling variable x1 = Q2/(s1 + Q2). Evidently

the dominant contribution from the diagram in the fig-

Fig. 1. A generic double pomeron exchange diagram for the
scattering amplitude

ure comes from the region where the energy of the blob is
much smaller than the total energy: s1 � s. In fact one
easily finds that s1 is of the order exp(1/g2Nc), the latter
quantity assumed to be large in the hard pomeron model.
Now if Q2 is of the same order (or larger, but much smaller
than s) then the upper blob in the figure has finite x1 and
can be calculated perturbatively. (Strictly speaking it is in
the DGLAP regime and its rigorous calculation requires
knowledge of twist four operators. However, in the fixed
coupling approximation and absence of any dimensionful
parameters one is lead to pure perturbation theory). In
the lowest approximation one finds a pair of pomerons
directly coupled to the quarks in the photon. This argu-
ment seems to be valid also for a larger number of ex-
changed pomerons. Guided by these considerations, we
summed the contributions from any number of exchanged
pomerons directly coupled to the photon projectile in [9].

What is the characteristic value Q2
0 which marks the

beginning of the applicability of the picture studied in [9]?
Unfortunately it is very difficult to determine it within
the hard pomeron model itself. Indeed, neither the scale
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of Q2 nor the exact value of the expansion parameter of
the model are well defined. If one measures Q in GeV/c
and takes the pomeron intercept (minus one) ∆ as the ex-
pansion parameter, then from the experimental value for
the latter about 0.3 one gets Q2

0 ∼ 30 (GeV/c)2. How-
ever changing the expansion parameter for a more natu-
ral αsNc/π, with the same value of ∆, one gets Q2

0 ∼ 104

(GeV/c)2.
In the latter case, the derivation presented in [9] re-

sults to refer to very large values of Q2. Physically more
interesting Q2 then lie below Q2

0 so that the upper blob
in the figure has a small scaling variable x1 and can also
be treated in the framework of the hard pomeron model.
This possibility is considered in the present note.

Recent studies of the system of four reggeized gluons
have revealed that the direct double pomeron exchange in
the hard pomeron model is equivalent to a certain triple
pomeron interaction (but not vice versa) and can be ex-
cluded from the amplitude altogether [10–12]. So the sit-
uation at Q2 below Q2

0 is in a certain case opposite to
that above Q2

0: now the direct double pomeron exchange
does not exist at all and all the contribution comes from
the triple pomeron interaction. This fact seems to be true
also for many exchanged pomerons. At least in the colour
dipole picture of A. Mueller the total contribution reduces
to a sum of pomeronic fan diagrams with only a triple
pomeron interaction [12]. Unfortunately, it does not look
technically possible to treat this contribution for more
than two exchanged pomerons. Because of that in this
note we restrict ourselves only to the double scattering
on the nucleus. As will be discussed, however, this con-
tribution seems to be dominant at high Q2 (always below
Q2

0).
We have to stress that in any case the hard pomeron

model can be applied to nuclear shadowing only in the
region of high enough 1/x and Q2. Present experimental
data do not lie in this region. So staying strictly within
the model one cannot expect a good agreement with the
existing data. The model can only give predictions about
the behaviour of the EMC effect at larger values of 1/x
and Q2 than the present ones. We hope that such values
(comparable to those achieved in the study of the proton
structure functions) are not beyond possibilities of the ex-
perimental activity in the future.

1.2 The amplitude A2 corresponding to the double
scattering on the nucleus and normalized according to
2ImA = σtot is given by the well-known expression (for
A > 2)

A2 = iC2
A

∫
d2κ

(2π)2
FA(κ)a2(κ) (1)

Here FA(κ) is a two-nucleon form-factor of the nucleus:

FA(κ) =
∫
d2r1d

2r2ρA(r1, r2)eiκ(r1−r2) , κz = 0 (2)

where ρA is a two-nucleon density. If it is taken factorized
(no correlation approximation) then

FA(κ) = T 2
A(κ) (3)

where TA(κ) is a two-dimensional Fourier transform of the
standard nuclear profile function TA(b). For the deuteron,
instead of (2),

F2(κ) =
∫
d2r|ψ(r)|2eiκr , κz = 0 (4)

where ψ is the deuteron wave function.
The high-energy part a2(κ) is given by an integral

ia2(κ) =
1

8πs2

∫ ∞

0
ds1Discs1D(s, s1, κ) (5)

where D(s, s1, κ) is a diffractive amplitude for the c.m. en-
ergy squared s, diffractive mass squared s1 and transferred
momentum κ.

We recall that the eikonal (Glauber) approximation
consists in taking in (5) only a contribution from the inter-
mediate state equal to the initial projectile hadron, which
gives a2 independent of κ:

a2(κ) = a2 (6)

where a is the forward projectile-nucleon amplitude (also
normalized to 2Im a = σtot). Then (1) and (3) immedi-
ately lead to the well-known result

A2 = iC2
Aa

2w2 , w2 =
∫
d2bT 2

A(b) (7)

2 Triple pomeron contribution

The diffractive amplitude found in the perurbative QCD
is totally given by a contribution from the triple pomeron
interaction [10–14]. So the corresponding double scatter-
ing amplitude on the nucleus will have an essentially non-
Glauber form.

The discontinuity entering (5) turns out to be given by

D1 ≡ 1
2i

Discs1D(s, s1, κ)

=
α5

s

π3N
2(N2 − 1)

s2

s1

∫ 3∏
i=1

d2ri
r21∇4

1

r22r
2
3

exp(−iκ(r2 + r3)/2)φ1(s1, 0, r1)
φ2(s2, κ, r2)φ2(s2,−κ,−r3)
δ2(r1 + r2 + r3) (8)

Here φi(s, κ, r), describe the upper (i = 1) and two lower
pomerons (i = 2, see Fig. 1) for the energetic variable s,
momentum κ and the intergluon transverse distance r.
N is the number of colours; s2 = s/s1. The pomerons
are joined by the triple pomeron vertex, whose form was
obtained in [10–12,15] in the high-colour limit. Presenting
the δ-function as an integral over the auxiliary momentum
q we rewrite (8) in the form

D1 =
α5

s

π3N
2(N2 − 1)

s2

s1

∫

d2q

(2π)2
χ1(s1, 0, q,+κ/2)χ2

2(s2, κ, q) (9)
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where

χ1(s, 0, q) =
∫
d2rr2∇4φ1(s, 0, r) exp iqr (10)

and
χ2(s, κ, q) =

∫
d2rr−2φ2(s, κ, r) exp iqr (11)

The solutions φ1(2) can be obtained by using the Green
function of the BFKL equation for a given total momen-
tum Gs(κ, r, r′). , For the projectile (see [3]):

φ1(s, κ, r) =
∫
d2r′(Gs(κ, r, 0) −Gs(κ, r, r′)ρ1(r′) (12)

Here ρ1(r) is the colour density of the projectile as a
function of the intergluon distance with the colour fac-
tor (1/2)δab and g2 separated. In our case the projectile
is a highly virtual photon with his momentum squared
−Q2 ≤ 0, which splits into qq̄ pairs of different flavours.
The explicit form of ρ is then well-known for this case [3].
For the transverse photon

ρ
(T )
1 (r) =

e2

4π3

Nf∑
f=1

Z2
f

∫ 1

0
dα (13)

(m2
fK

2
0 (εfr) + (α2 + (1 − α)2)ε2fK

2
1 (εfr))

where ε2f = Q2α(1−α)+m2
f and mf and Zf are the mass

and charge of the quark of flavour f . For the longitudinal
photon

ρ
(L)
1 (r) =

e2

π3Q
2

Nf∑
f=1

Z2
1

∫ 1

0
dαα2(1 − α)2K2

0 (εfr) (14)

For the hadronic target, we assume an expression similar
to (12) with a colour density ρ2(r) non-perturbative and
its explicit form unknown. For our purpose it is sufficient
to know that the corresponding mass scale is not large.

The two lower pomerons are in their asymptotic regime.
So χ2 can be found using an asymptotic expression for the
pomeron Green function, in the same way as in [16], to
which paper we refer for the details. One obtains then

χ2(s, κ, q) = 8s∆(π/β ln s)3/2F2(κ)J(κ, q) (15)

where ∆ = (αsN/π)4 ln 2 is the pomeron intercept, β =
(αsN/π)14ζ(3),

J(κ, q) =
∫
d2p

2π
1

|κ/2 + ρ| |κ/2 − p| |q + p| (16)

and F2(κ) desribes the coupling of the lower pomeron to
the target

∫
d2Rd2r

exp(iκR)rρ2(r)
|R+ r/2| |R− r/2| = πF2(κ) (17)

At small κ F2 diverges logarithmically:

F2 ' −4(R/N) lnκ , κ → 0 (18)

where
R =

N

2

∫
d2rrρ2(r) (19)

has a meaning of the average target dimension.
If one also takes an asymptotic expression for the up-

per pomeron then the whole discontinuity D1 aquires a
factorized form [16] corresponding to the triple pomeron
contribution in the old Regge-Gribov theory:

D1(s, s1, κ) = −γ1γ
2
2(κ)γ3P (κ)P (s1, 0)P 2(s/s1, κ) (20)

Here P (s, κ) is the pomeron propagator

P (s, κ) = 2
√
πs1+∆(β ln s)−ε (21)

with ε = 1/2(3/2) for κ = 0(> 0). The vertices γ1(2)
describe the pomeron interaction with the projectile (tar-
get). Using (13) and (14) one obtains, neglecting the quark
masses

γ1 = αs

√
N2 − 1(b/Q) exp

(
− ln2Q

β ln s

)
(22)

where Q2 is the photon virtuality and for a transverse (T)
and longitudinal (L) photons

bT =
9πe2Z2

256
, bL =

2
9
bT (23)

Z2 =
∑

f Z
2
f . The target vertex γ2 is proportional to F2,

(17)
γ2(κ) = αs

√
N2 − 1F2(κ) (24)

and so logarithmically divergent at small κ. The triple
pomeron coupling γ3P is also singular at small κ:

γ3P (κ) =
32α2

sN
2

√
N2 − 1

B

κ
(25)

where the number B is given by a 6-dimensional integral
over auxiliary momenta [12]. Numerical calculations give

B = 4.98 ± 0.01 (26)

in agreement with the analytic result recently obtained in
[17,18] (their g3P = (2π)4B).

Putting explicit expressions for P ’s and γ’s into (20)
and performing the integration over s1 one finds

a2 = −c2R
2

Q

s2∆

(β ln s)3
ln2 κ

κ
(27)

where c2 is a known number. From this purely asymptotic
expression one could come to two conclusions. First, the
double scattering contribution behaves in Q exactly as
the single scattering term, that is, as 1/Q. As a result,
the EMC effect related to it should be independent of
Q. Of course, this is an immediate consequence of the
factorization property of the asymptotic triple pomeron
interaction. Second, the singularity at small κ leads to a
stronger dependence on A. Since roughly speaking κ ∼
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1/RA where RA is the nuclear radius, from (27) one could
conclude that the double scattering is enhanced by a factor
(RA/R) ln2(RA/R) as compared to the standard eikonal
result.

However all these conclusions are in fact wrong, since
the upper pomeron enters the triple pomeron interaction
not at asymptotic energies αs ln s � 1 but at lower ones
αs ln s ∼ 1, where the asymptotic expression for its Green
function used in (20) is not valid. So we have to recur to
the exact expression for it. Due to azimuthal symmetry
of the projectile colour density we can retain only terms
with zero orbital momentum in it:

Gs(0, r, r′) = (1/8)rr′
∫ ∞

−∞

dνsω(ν)

(ν2 + 1/4)2
(r/r′)−2iν

(28)

where

ω(ν) = 2(αsN/2π)(ψ(1) − Reψ(1/2 + iν)) (29)

If we take this expression, put it into χ1, Eq. (10) and
integrate first over s1, as indicated in (10), and afterwards
over r, we obtain∫

ds1s
−1−2∆
2 χ(s1, 0, q) = −4π

q

∫
d2r′r′ρ1(r′)I(q, r′)

(30)
where I(q, r′) is the remaining integral over ν:

I(q, r′) =
∫
dν

(qr′/2)2iν

2∆− ω(ν)
Γ (1/2 − iν)
Γ (1/2 + iν)

(31)

The asymptotic expression discussed above follows if
one takes in (31) all terms except the denominator 2∆−
ω(ν) out of the integral at ν = 0 and in the denomina-
tor presents ω(ν) = ∆ − βν2. Evidently this procedure
is wrong. In fact, the integral (31) can be calculated as
a sum of residues of the integrand at points ν = ±ixk,
0 < x1 < x2 < . . ., at which

2∆− ω(ν) = 0 (32)

Residues in the upper semiplane are to be taken if qr′/2 >
1 and those in the lower semiplane if qr′/2 < 1. Thus we
obtain

I(q, r′) =
2π2

αsN

∑
k

c
(±)
k (qr′/2)±2xk (33)

where

c
(±)
k

Γ (1/2 ∓ xk)/Γ (1/2 ± xk)
ψ′(1/2 − xk) − ψ′(1/2 + xk)

(34)

and the signs should be chosen to always have (qr′/2)±2xk

< 1.
The first three roots of (32) are

x1 = 0.3169 , x2 = 1.3718 , x3 = 2.3867 (35)

with the corresponding coefficients c(±)
k

c
(+)
1 = 0.1522 , c(+)

2 = −0.1407 , c(+)
3 = 0.03433 , (36)

c
(−)
1 = 0.007866 , c(−)

3 = −0.001802 , c(−)
2 = 0.004494

Returning to (5) for a2 as an integral of the discontinu-
ity D1 and putting expressions for χ2 and the integrated
χ2, (15) and (30), into the latter we obtain

a2 = −128π2α4
sN(N2 − 1)

s2∆

(β ln s)3

F 2
2 (κ)

∑
k

∫
d2rrρ1(r)

[
c
(+)
k

(r
2

)2xk

B
(+)
k (r, κ)

+c(−)
k

(r
2

)−2xk

B
(−)
k (r, κ)

]
(37)

where

B
(±)
k (r, κ) =

∫
d2q

(2π)2q
q±2xk

J2(κ, q − κ/2)θ(±(2/r − q)) (38)

As we observe, in the general case the factorization
property is lost: the integrals B(±) depend nontrivially
both on the projectile and target variables. However one
can see theat this property is restored in the limit of high
Q2, relevant for the hadronic structure functions. In fact,
in this limit the characteristic values of r are small: r ∼
1/Q. Let us study how the integrals B(±) behave at small
r. In B(±) evidently large values of q are essential. The
integrals J behave as ln q/q at q → ∞. This leads to the
following behaviour.

B
(+)
k (r, κ) ∼ r1−2xk if 2xk > 1 , and ∼ const if 2xk < 1

B
(−)
k (r, κ) ∼ r1+2xk

Combining this with other factors depending on r we see
that all terms multiplying ρ1 in the integrand behave as
r2 at small r, except the first term with k = 1, which, due
to 2x1 < 1, behaves as r1+2x1 . Evidently this term gives
the dominant contribution in the limit Q2 → ∞, when
(37) simplifies to

a2 = −27−2x1π2α4
sN(N2 − 1)c(+)

1

s2∆

(β ln s)3
F 2

2 (κ)
b1B1

Q1+2x1κ1−2x1
(39)

where the numbers b1 and B1 are very similar to our old
b and B with additional powers of the variable in the in-
tegrand:

b1 = Q1+2x1

∫
d2rr1+2x1ρ1(r) (40)

(it does not depend on Q) and

B1 = κ1−2x1

∫
d2q

(2π)2q
q2x1J2(κ, q − κ/2) (41)

(it does not depend on κ). Numerical calculations give

b
(T )
1 = 0.3145e2Z2 , b(L) = 0.04377e2Z2 ,

B1 = 17.93 (42)



M. Braun: Double scattering on the nucleus in the perturbative QCD 347

Thus in the high-Q limit the expression for a2 fully
factorizes in the projectile and target. Its dependence on
Q and κ turns out to be intermediate between the eikonal
and asymptotic triple pomeron predictions. It vanishes at
large Q as 1/Q1+2x1 , faster than the single pomeron ex-
change and asymptotic triple pomeron (∼ 1/Q) but not
so fast as the eikonal prediction 1/Q2. It is also singular
at κ → 0, but the singularity is weaker than predicted by
the asymptotic triple pomeron.

The double scattering amplitude following from (39)
is

A2 = iC2
A211−2x1π2α4

s

N2 − 1
N

c
(+)
1 w̃2b1B1

s2∆

(β ln s)3
R2

(QRA)1+2x1
(43)

where with a logarithmic accuracy (see (18))

w̃2 = R1+2x1
A

∫
d2κ

(2π)2
κ−1+2x1FA(κ) ln2 κ (44)

and we have introduced the nuclear radius RA to make w̃2
dimensionless. Passing to the low-x EMC effect we have
to compare it with the dominant single scattering term

A1 = iC1
Aγ1γ2(0)P (s, 0) (45)

where, calculated at κ exactly equal to zero, γ2(0) is finite:

γ2(0) = 2αs

√
N2 − 1(R/N) (46)

The EMC effect is characterised by the EMC ratio REMC

of the nuclear structure function to A times the nucleon
one. The double scattering contribution to it is given by
REMC = 1−λA where λA = −A2/A1. From our formulas
we find

λA = c(A− 1)w̃2
R

RA

1
(QRA)2x1

s∆

(β ln s)5/2 exp
(

ln2Q

β ln s

)
(47)

where the numerical coefficient is

c = 29−2x1π3/2α2
sc

(+)
1 B1(b1T + b1L)/(bT + bL) (48)

From (47) we expect the EMC effect to go to zero as
Q → ∞ as Q−2x1 , that is, rather slowly, essentially slower
than one would find from the eikonal picture. Its depen-
dence on A is enhanced by a factor ∼ (RA/R)1−2x1 ln2

(RA/R) as compared to the eikonal prediction. The en-
hancement is not so strong as one might naively predict
on the basis of the asymptotic triple pomeron picture.

3 Some numerical estimates

The obtained formulas in principle allow to calculate the
double scattering contribution to the EMC effect on nuclei

at small x. Since the EMC effect is small experimentally,
one may hope that this contribution practically exhausts
it (also see Conclusions for some justification). Our formu-
las contain two parameters: the strong coupling constant
αs and the nucleon radius R. The value of αs can be ex-
tracted from the observed intercept ∆. As to R, it has to
be of the order of the proton electromagnetic radius. Of
course, one has to take into account inevitable uncertain-
ties associated with the logarithmic character of the hard
pomeron model and absence of scale in log s and log κ.
However in trying to apply our formulas to the experi-
mental situation one meets with another serious obstacle.

Comparison of the experimental proton structure func-
tion with the predictions based on the hard pomeron model
indicates that the model can only be valid at very small
x ≤ x0 = 0.01. A power growth characteristic for the
hard pomeron can be supported experimentally at x ∼
x1 = 10−4–10−5. The triple pomeron interaction picture
requires that both s1 for the upper pomeron and s/s1 for
the two lower ones be correspondingly large. It follows
that this picture can only be applicable at extraordinary
small x ≤ x0x1 = 10−6. Besides, the large Q2 limit used
to obtain a factorizable form for the contribution requires
that (QRA)1−2x1 � 1. Present experimental data on the
EMC effect do not satisfy these requirements. They are re-
stricted to x > 0.005 and values of Q2 below 2 (GeV/c)2
for x < 0.01. Thus, comparison of our predictions to the
existing data cannot be justified.

If, notwithstanding this objection, one takes realistic
values ∆ = 0.2 and R = 0.44 fm [9], then for Ca at
x = 0.0085, Q2 = 1.4 (GeV/c)2 one gets λ = 0.14 in
an agreement with the experimental value λex = 0.154 ±
0.014. However with the same parameters for Xe at x =
0.0065, Q2 = 1.34 (GeV/c)2 and C at x = 0.0055, Q2 =
1.1 (GeV)2) one gets values λ = 0.38 and 0.043, respec-
tively, compared to the experimental values λex = 0.16 ±
0.11 and 0.096 ± 0.013.

Forgetting about the present experimental situation,
our predictions for the range of x and Q2 where one can
expect the obtained formulas to be applicable are illus-
trated in the table. From it one observes that the depen-
dence on x is quite weak. In fact one obtains practically
the same values of λ in the whole range 10−6 < x < 10−2

due to compensation of the growth with 1/x of both the
numerator and denominator in (47). The predicted de-
pendence on Q2 is clearly visible, although also not very
strong, which follows from (47).

4 Conclusions

Two main consequences follow for the double scattering
contribution to the structure functions of the nuclei from
the hard pomeron model. First, at large Q2 it behaves as
Q1−2x1 where x1 = 0.3169 is a number which does not
depend on the coupling and so is exactly known. As a re-
sult the corresponding low-x EMC effect should go to zero
as Q−2x1 . This property does not seem to be changed af-
ter the inclusion of higher order rescatterings. Indeed in
the dipole approach one finds that they are described by
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Table 1. Predictions for the EMC ratios at large 1/x and Q2

A x Q2 (GeV2) 1 − REMC

40 10−5 10. 0.0685
100. 0.0330

10−6 10. 0.0775
100. 0.0374

64 10−5 10. 0.104
100. 0.0502

10−6 10. 0.118
100. 0.0568

131 10−5 10. 0.190
100. 0.0914

10−6 10. 0.215
100. 0.103

the pomeronic fan diagrams [12]. Then the initial pomeron
coupled to the projectile will always be in the same regime
as in our double scattering case with the only difference
that the rest part will behave as Sn∆ for n rescatterings.
The power x(n)

1 governing the high Q2 behaviour will be
the smallest positive root of (32) with 2∆ → n∆. This
power grows with n: x(3)

1 = 0.3793, x(4)
1 = 0.4097, . . .,

x
(∞)
1 = 0.5. Contributions from higher order rescatterings

will then go down at high Q2 faster than the double scat-
tering contribution, although by a rather small power of
Q2. Thus the behaviour Q−2x1 = Q−0.6338 seems to be
a clear prediction for the small-x EMC effect which may
serve to test the hard pomeron model.

Second, due to singularities at small momentum trans-
fers, the double scattering turns out to be more strongly
dependent on A as compared to the standard eikonal pre-
dictions. This second prediction does not, however, seem
so trustworthy, since it relies on the specific property of
the lowest order hard pomeron model of having no intrin-
sic scale.

References

1. S. Brodsky, T.E. Close, J.F. Gunion, Phys. Rev. D6
(1972) 177

2. S. Brodsky, H.J. Liu, Phys. Rev. Lett. 64 (1990) 1342
3. N.N. Nikolaev, B.G. Zakharov, Z. Phys. C49 (1991) 607
4. V. Barone, M. Genovese, N.N. Nikolaev, E. Predazzi,

B.G. Zakharov, Z. Phys. C58 (1993) 541
5. B.Z. Kopeliovich, B. Povh, Phys. Lett. B367 (1996) 329
6. A.H. Mueller, J. Qiu, Nucl. Phys. B268 (1986) 427
7. J. Qiu, Nucl. Phys. B291 (1987) 746
8. E.L. Berger, J. Qiu, Phys. Lett. B206 (1988) 141
9. N. Armesto, M.A. Braun, Z. Phys. C76 (1997) 81

10. A. Mueller, Nucl. Phys. B415 (1994) 373
11. J. Bartels, M. Wuesthoff, Z. Phys. C66 (1995) 157
12. M.A. Braun, C.P. Vacca, Bologna Univ. preprint, hep-

ph/9711486
13. N.N. Nikolaev, B.V. Zakharov, Z. Phys. C64 (1994) 631
14. M. Genovese, N.N. Nikolaev, B.G. Zakharov, JETP 81

(1995) 633
15. R. Peschanski, Phys. Lett. B409 (1997) 491
16. M.A. Braun, Z. Phys. C71 (1996) 123
17. G.P. Korchemsky, preprint LPTHE-Orsay-97-62; hep-

ph/9711277
18. A. Bialas, H. Navelet, R. Peschanski, Saclay preprints hep-

ph/9711236 and hep-ph/9711442


